Search results for "Wireless battery charger"

showing 9 items of 9 documents

An over-the-distance wireless battery charger based on RF energy harvesting

2017

An RF powered receiver silicon IC (integrated circuit) for RF energy harvesting is presented as wireless battery charger. This includes an RF-to-DC energy converter specifically designed with a sensitivity of -18.8 dBm and an energy conversion efficiency of ∼45% at 900 MHz with a transmitting power of 0.5 W in free space. Experimental results concerned with remotely battery charging using a complete prototype working in realistic scenarios will be shown.

Battery (electricity)EngineeringInternet of Things02 engineering and technologyIntegrated circuitInternet of Things; Litium Ion Battery; Radio Frequency Harvesting; Wireless Battery Charger; Wireless Sensor Networks; Hardware and Architecture; Electrical and Electronic Engineering; Modeling and SimulationSettore ING-INF/01 - ElettronicaRadio Frequency Harvestinglaw.inventionBattery chargerlawWireless Battery ChargerHardware_INTEGRATEDCIRCUITS0202 electrical engineering electronic engineering information engineeringElectronic engineeringElectrical and Electronic Engineeringbusiness.industry020208 electrical & electronic engineeringEnergy conversion efficiencyElectrical engineering020206 networking & telecommunicationsHardware and ArchitectureModeling and SimulationLitium Ion BatteryRadio frequencyInternet of ThingWireless Sensor NetworksbusinessEnergy harvestingSensitivity (electronics)Wireless sensor networkWireless Sensor Network2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)
researchProduct

A Battery-Free Smart Sensor Powered with RF Energy

2018

The development of Internet of Things (IoT) infrastructure and applications is stimulating advanced and innovative ideas and solutions, some of which are pushing the limits of state-of-the-art technology. The increasing demand for Wireless Sensor Network (WSN) that must be capable of collecting and sharing data wirelessly while often positioned in places hard to reach and service, motivates engineers to look for innovative energy harvesting and wireless power transfer solutions to implement battery-free sensor nodes. Due to the pervasiveness of RF (Radio Frequency) energy, RF harvesting that can reach out-of-sight places could be a key technology to wirelessly power IoT sensor devices, whic…

Computer Networks and CommunicationsComputer scienceInternet of ThingsEnergy Engineering and Power TechnologyRadio Frequency HarvestingIndustrial and Manufacturing EngineeringArtificial IntelligenceWireless Battery ChargerWirelessRenewable EnergyWireless power transferInstrumentationSustainability and the Environmentbusiness.industryRF power amplifierTransmitterElectrical engineeringComputer Science Applications1707 Computer Vision and Pattern RecognitionInternet of Things; Litium Ion Battery; Radio Frequency Harvesting; Wireless Battery Charger; Wireless Power Transfer; Wireless Sensor Networks; Artificial Intelligence; Computer Networks and Communications; Computer Science Applications1707 Computer Vision and Pattern Recognition; Energy Engineering and Power Technology; Renewable Energy Sustainability and the Environment; Industrial and Manufacturing Engineering; InstrumentationSensor nodeLitium Ion BatteryWireless Power TransferRadio frequencyInternet of ThingWireless Sensor NetworksbusinessEnergy harvestingWireless sensor network2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)
researchProduct

Speed detection of battery-free nodes based on RF Wireless Power Transfer

2020

In the Internet of Things (IoT) era, Wireless Sensor Networks (WSNs) are rapidly increasing in terms of relevance and pervasiveness thanks to their notable real-time monitoring performance across several fields, including industrial, domestic, military, biomedical, commercial, environmental, and other sectors. A highly attractive implementation of WSNs is asset tracking with accurate data regarding the location and transportation conditions of goods, equipment, and the like. One highly promising application of WSNs along these lines is the remote speed monitoring of goods, ideally with battery-free sensor nodes that do not require any maintenance. This, however, represents a major challenge…

energy harvestingwsnsAsset trackingComputer scienceNode (networking)System of measurementReal-time computingwireless power transferSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettriciradio frequencySettore ING-INF/01 - Elettronicainternet of thingsPower (physics)WSNs Radio Frequency Energy Harvesting Wireless Battery Charger Lithium Ion Battery Wireless Sensor Networks Internet of ThingsbatteryWireless power transferRadio frequencylithium ionwireless sensor networksEnergy harvestingWireless sensor networkwireless battery charger
researchProduct

Advanced Monitoring Systems Based on Battery-Less Asset Tracking Modules Energized through RF Wireless Power Transfer

2020

Asset tracking involving accurate location and transportation data is highly suited to wireless sensor networks (WSNs) featuring battery-less nodes that can be deployed in virtually any environment and require little or no maintenance. In response to the growing demand for advanced battery-less sensor tag solutions, this article presents a system for identifying and monitoring the speeds of assets in a WSN with battery-less tags that receive all their operating energy through radio frequency (RF) wireless power transfer (WPT) architecture, and a unique measurement approach to generate time-domain speed readouts. The assessment includes performance characteristics and key features of a syste…

Internet of thingsMaximum power principleComputer scienceAsset tracking02 engineering and technologylcsh:Chemical technologywsnSettore ING-INF/01 - Elettronica01 natural sciencesBiochemistryArticleAnalytical Chemistrywireless sensor networkRadio frequency0202 electrical engineering electronic engineering information engineeringElectronic engineeringlcsh:TP1-1185System on a chipWireless power transferWireless power transferElectrical and Electronic EngineeringInstrumentationwsnsEnergy harvesting010401 analytical chemistryEnergy conversion efficiencyWireless battery charger020206 networking & telecommunicationsWireless sensor networksAtomic and Molecular Physics and Optics0104 chemical sciencesSettore ING-IND/31 - ElettrotecnicawptNode (circuits)Radio frequencyWireless sensor networkEnergy harvestingSensors
researchProduct

Strategies and Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer

2019

The continuous development of internet of things (IoT) infrastructure and applications is paving the way for advanced and innovative ideas and solutions, some of which are pushing the limits of state-of-the-art technology. The increasing demand for Wireless Sensor Nodes (WSNs) able to collect and transmit data through wireless communication channels, while often positioned in locations that are difficult to access, is driving research into innovative solutions involving energy harvesting (EH) and wireless power transfer (WPT) to eventually allow battery-free sensor nodes. Due to the pervasiveness of radio frequency (RF) energy, RF EH and WPT are key technologies with the potential to power …

Power managementenergy harvestingComputer science02 engineering and technologylithium-ion batterylcsh:Chemical technology01 natural sciencesBiochemistrySettore ING-INF/01 - ElettronicaEnergy harvesting; Internet of things; Lithium ion battery; Radio frequency; Wireless battery charger; Wireless sensor networks; WSNsLithium-ion batteryArticleAnalytical Chemistrywireless sensor network0202 electrical engineering electronic engineering information engineeringWirelessSystem on a chiplcsh:TP1-1185Wireless power transferElectrical and Electronic Engineeringwireless sensor networksInstrumentationwireless battery chargerbusiness.industry010401 analytical chemistryEnergy conversion efficiencyElectrical engineering020206 networking & telecommunicationsradio frequencyWSNinternet of thingsAtomic and Molecular Physics and Optics0104 chemical sciencesWSNsRadio frequencyEnergy sourcebusinesslithium ion batteryWireless sensor networkEnergy harvesting
researchProduct

Advanced Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer

2020

This paper presents three different techniques for efficiently powering an energy-autonomous wireless sensor (EAWS) through both energy harvesting (EH) and RF wireless power transfer (WPT). The aim of the paper is to provide effective strategies and techniques to reduce, as far as possible, the cost of wiring of the automotive production process due to the continuous and constant increase in the use of sensors. The techniques employ a highly integrated state-of-the-art, ultra-low power 2.5 mu W system-on-chip (SoC) system, designed for multi-source RF wireless energy harvesting and power transfer and are designed with the goal of minimizing and, where possible, eliminating the costly mainte…

energy harvestingbusiness.industryComputer science020209 energy020208 electrical & electronic engineeringElectrical engineeringwireless power transfer02 engineering and technologyradio frequencyMaintenance engineeringantennaPower (physics)0202 electrical engineering electronic engineering information engineeringMaximum power transfer theoremWirelessautomotiveRadio frequencyWireless power transferlithium ion batterywireless sensor networksbusinessEnergy harvestingWireless sensor networkwireless battery charger2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)
researchProduct

A wireless battery charger architecture for consumer electronics

2012

In this paper, an innovative design of a wireless battery charger for portable electronic devices is proposed. The wireless power transfer is implemented through the magnetic coupling between a power transmitter, which is connected to the grid, and a power receiver, which is integrated inside the load device. An innovative receiver architecture which heavily improves the power conversion efficiency is presented. The proposed solution is standard compliant and suitable for IC implementation. A comparison between a conventional and the proposed receiver architectures is carried out by SPICE simulations. As shown by simulation results, a power efficiency increase by 40% is provided by the prop…

business.industryComputer scienceTransmitterElectrical engineeringSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - ElettronicaConstant power circuitBattery chargerwireless power transfer wireless battery charger handheld devices power electronicsPower moduleWirelessWireless power transferElectronicsbusinessElectrical efficiency
researchProduct

An RF Wireless Power Transfer system to power battery-free devices for asset tracking

2019

Internet of Things (IoT) and Wireless Sensor Networks (WSN) infrastructures are becoming more and more available and diffused. One major outcome is the development of new services that help to make everyday life easier and better. One of those to which this paper reserves special attention is asset tracking which refers to the method of tracking physical assets. This service is very well based on IoT infrastructure and, due to the enormous number of objects to be traced, desperately needs the availability of inexpensive tags with sensing capabilities, that can be conveniently monitored from a long distance and require no maintenance. For this, engineers are called to face very challenging i…

Service (systems architecture)Computer scienceAsset trackingReal-time computingBattery02 engineering and technologyAsset (computer security)01 natural sciencesWireless Battery ChargerEnergy Harvesting0202 electrical engineering electronic engineering information engineeringSystem on a chipWireless power transferwireless sensor networksRadio Frequency010401 analytical chemistry020206 networking & telecommunicationsinternet of things0104 chemical sciencesWSNsIdentification (information)Lithium IonInternet of ThingEnergy harvestingWireless sensor networkWireless Sensor Network
researchProduct

A Battery-free Asset Monitoring System based on RF Wireless Power Transfer

2020

In the Internet of Things (IoT) era, asset monitoring represents an appealing implementation of Wireless Sensor Networks due to the enormous benefits associated with being able to monitor and record the exact position and transportation conditions of assets, personal objects, and the like. This kind of infrastructure enables the provision of increasingly advanced services, including the ability to measure the movement speed of a monitored asset using relatively inexpensive nodes with sensing capabilities and wireless transmission and reception. These nodes would ideally employ battery-free sensors that do not require any maintenance, but conventional power supply management systems cannot s…

TraverseComputer scienceNode (networking)010401 analytical chemistryReal-time computing020206 networking & telecommunications02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciAsset (computer security)01 natural sciences0104 chemical sciencesIdentification (information)0202 electrical engineering electronic engineering information engineeringSystem on a chipWireless power transferWireless Power Transfer WPT Wireless Sensor Networks WSNs Radio Frequency Energy Harvesting Wireless Battery Charger Lithium Ion Internet of ThingsWireless sensor networkEnergy harvesting
researchProduct